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Abstract Data analysis processes in scientific applications

can be expressed as coarse-grain workflows of complex data

processing operations with data flow dependencies between

them. Performance optimization of these workflows can be

viewed as a search for a set of optimal values in a multidi-

mensional parameter space consisting of input performance

parameters to the applications that are known to affect their

execution times. While some performance parameters such

as grouping of workflow components and their mapping to

machines do not affect the accuracy of the analysis, others

may dictate trading the output quality of individual compo-

nents (and of the whole workflow) for performance. This pa-

per describes an integrated framework which is capable of

supporting performance optimizations along multiple such

parameters. Using two real-world applications in the spa-

tial, multidimensional data analysis domain, we present an

experimental evaluation of the proposed framework.
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1 Introduction

Advances in digital sensor technology and the complex nu-

merical models of physical processes in many scientific do-

mains are bringing about the acquisition of enormous vol-

umes of data. For example, a dataset of high resolution im-

age data obtained from digital microscopes or large scale

sky telescopes can easily reach hundreds of Gigabytes, even

multiple Terabytes in size1. These large data volumes are

transformed into meaningful information via data analysis

processes. Analysis processes in scientific applications are

expressed in the form of workflows or networks of inter-

dependent components, where each component corresponds

to an application-specific data processing operation. Image

datasets, for instance, are analyzed by applying workflows

consisting of filtering, data correction, segmentation, and

classification steps. Due to the data and compute intensive

nature of scientific data analysis applications, scalable so-

lutions are required to achieve desirable performance. Soft-

ware systems supporting the analysis of large scientific data-

sets implement several optimization mechanisms to reduce

execution times. First, workflow management systems take

advantage of distributed computing resources in the Grid.

The Grid environment provides computation and storage re-

sources; however, these resources are often located at dis-

parate sites managed within different security and admin-

istrative domains. Workflow systems support execution of

workflow components at different sites (Grid nodes) and re-

liable, efficient staging of data across the Grid nodes. A Grid

node may itself be a large cluster system or a potentially

heterogeneous and dynamic collection of machines. Second,

for each portion of a workflow mapped to such clusters, they

1 DMetrix array microscopes can scan a slide at 20x+ resolution in

less than a minute. The Large Synoptic Survey Telescope will be able

to capture a 3.2 Gigapixel image every 6 seconds, when it is activated.
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enable the fine-grain mapping and scheduling of tasks onto

such machines.

The performance of workflows is greatly affected by cer-

tain parameters to the application that direct the amount of

work to be performed on a node or the volume of data to be

processed at a time. The optimal values of such parameters

can be highly dependent on the execution context. There-

fore, performance optimization for workflows can be viewed

as a search for a set of optimal values in a multidimen-

sional parameter space, given a particular execution con-

text. Workflow-level performance parameters include group-

ing of data processing components comprising the workflow

into ‘meta-components’, distribution of components across

sites and machines within a site, and the number of instances

of a component to be executed. These parameters impact

computation, I/O, and communication overheads, and as a

result, the total execution time. Another means of improving

performance is by adjusting component-level performance

parameters in a workflow. An example of such a parameter

is the data chunk size in applications which analyze spatial,

multidimensional datasets. Another example is the version

of the algorithm employed by a component to process the

data.

We classify workflow-level and component-level perfor-

mance parameters into two categories:

(i) Accuracy-preserving parameters (such as data chunk size)

can affect the performance of an operation without affecting

the quality of the analysis output, and (ii) Accuracy-trading

parameters can trade the quality of the output for perfor-

mance gains, and vice-versa. An example of an accuracy-

trading parameter is the ‘resolution’ at which image data

are processed. A classification algorithm might process low-

resolution images quickly, but its classification accuracy wo-

uld likely be lower compared to that for higher resolution

images. When optimizations involve accuracy-performance

trade-offs, users may supplement their queries with applicat-

ion-level quality-of-service (QoS) requirements that place

constraints on the accuracy of the analysis (Kumar et al,

2008b). For instance, when images in a dataset are processed

at different resolutions to speed up the classification pro-

cess, the user may request that a certain minimum accuracy

threshold be achieved.

In this paper, we describe the design and implementa-

tion of a framework that can support application execution

in a distributed environment and enable performance op-

timization via manipulation of accuracy-preserving and/or

accuracy-trading parameters. We present an instance of our

framework that integrates multiple subsystems at different

levels:

– Wings (Gil et al, 2007) to facilitate high-level, semantic

descriptions of application workflows

– Pegasus (Deelman et al, 2004), Condor (Thain et al, 2005),

and DataCutter (Beynon et al, 2001) to support scalable

workflow execution across multiple institutions and on

distributed clusters within an institution

– ECO (Chen et al, 2005) to enable compiler optimiza-

tions for fine-grain computations executing on specific

resources

Application developers and end-users can use our frame-

work to provide high-level, semantic descriptions of appli-

cation structure and data characteristics. As our initial fo-

cus is on addressing performance requirements in spatial,

multidimensional data analysis applications, we have devel-

oped extensions to core ontologies in Wings to be able to de-

scribe spatial datasets and also to enable automatic compo-

sition and validation of the corresponding workflows. Once

a workflow has been specified, users can adjust workflow-

level and component-level parameters based on their QoS

requirements to enable performance optimizations during

execution. As part of this effort, we have also extended Con-

dor’s default job-scheduling mechanism to support perfor-

mance optimizations stemming from accuracy-performance

related trade-offs. We show how our framework supports

parameter-based optimizations for real biomedical image an-

alysis workflows using two cluster systems located at two

different departments at the Ohio State University.

2 Related Work

Workflow management systems for the Grid and Services

Oriented Architectures, such as Taverna (Oinn et al, 2004),

Kepler (Ludäscher et al, 2006) and Pegasus (Deelman et al,

2004) seek to minimize the makespan by manipulating work-

flow-level parameters such as grouping and mapping of a

workflow’s components. Our framework extends such sup-

port by providing the combined use of task- and data-parall-

elism and data streaming within each component and across

multiple components in a workflow to fully exploit the ca-

pabilities of Grid sites that are high-end cluster systems.

Glatard et. al. (Glatard et al, 2006) describe the combined

use of data parallelism, services parallelism and job group-

ing for data-intensive application service-based workflows.

Our work is in the context of task-based workflows where

execution plans are developed based on abstract workflow

descriptions. We also address performance improvements by

adjusting domain-specific component-level parameters.

The Common Component Architecture(CCA) forum2 ad-

dresses domain-specific parameters for components and the

efficient coupling of parallel scientific components. They

seek to support performance improvements through the use

of external tunability interfaces (Chang and Karamcheti, 2000;

Norris et al, 2004). The Active Harmony system (Chung

2 http://www.cca-forum.org
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and Hollingsworth, 2004, 2006) is an automatic parame-

ter tuning system that permits on-line rewriting of param-

eter values at run-time, and uses a simplex method to guide

the search for optimal parameter values. Although we share

similar motivations with the above works, we target data-

intensive applications running on the Grid. We account for

performance variations brought about by the characteristics

of dataset instances within a domain.

Our work also supports application-level QoS require-

ments by tuning accuracy-trading parameters in the work-

flows. The performance/quality trade-off problem and tun-

ing of quality-trading parameters for workflows has been

examined before in service-based workflows (Brandic et al,

2008) and component-based systems (Cortellessa et al, 2006).

But these works are geared towards system-level QoS and

optimization of system-related metrics such as data transfer

rates, throughput and service affinity etc. Application-level

QoS for workflows has been addressed in (Zhou et al, 2004;

Chiu et al, 2008). Acher et al (2008) describe a services-

oriented architecture that uses ontology-based semantic mod-

eling techniques to address the variability in results pro-

duced by Grid services for medical imaging. We support

trade-offs based on quality of data output from the applica-

tion components and integrate such parameter tuning within

a batch system like Condor.

Supporting domain-specific parameter-based optimiza-

tions requires the representation of these parameters and their

relations with various performance and quality metrics in a

system-comprehensible manner. In (Chiu et al, 2008), end-

users are required to provide performance and quality mod-

els of expected application behavior to the system. Onto-

logical representations of performance models have been

investigated in the context of workflow composition in the

Askalon system (Truong et al, 2007). Lera et al. (Lera et al,

2006) proposed the idea of developing performance-related

ontologies that can be queried and reasoned upon to ana-

lyze and improve performance of intelligent systems. Zhou

et. al. (Zhou et al, 2004) used rule-based systems to config-

ure component-level parameters. While beyond the scope of

this paper, we seek to complement our framework with such

approaches in the near future.

3 Motivating Applications

Our work is motivated by the requirements of applications

that process large spatial, multidimensional datasets. We use

the following two application scenarios from the biomedical

image analysis domain in our evaluation. Each application

has different characteristics and end-user requirements.

3.1 Application 1: Pixel Intensity Quantification (PIQ)

Figure 1 shows a data analysis pipeline (Chow et al, 2006)

(developed by neuroscientists at the National Center for Mi-

croscopy and Imaging Research) for images obtained from

confocal microscopes. This analysis pipeline quantifies pixel

intensity within user-specified polygonal query regions of

the images through a series of data correction steps as well

as thresholding, tessellation, and prefix sum generation op-

erations. This workflow is employed in studies that involve

comparison of image regions obtained from different sub-

jects as mapped to a canonical atlas (e.g., a brain atlas).

From a computational point of view, the main end-user re-

quirements are (1) to minimize the execution time of the

workflow while preserving the highest output quality, and

(2) to support the execution of potentially terabyte-sized out-

of-core image data.

3.2 Application 2: Neuroblastoma Classification (NC)

Figure 2 shows a multi-resolution based tumor prognosis

pipeline (Kong et al, 2007) (developed by researchers at the

Ohio State University) applied to images from high-power

light microscopy scanners. This workflow is employed to

classify image data into grades of neuroblastoma, a com-

mon childhood cancer. Our primary goal is to optimally sup-

port user queries while simultaneously meeting a wide range

of application-level QoS requirements. Examples of such

queries include: “Minimize the time taken to classify im-

age regions with 60% accuracy” or “Determine the most

accurate classification of an image region within 30 min-

utes, with greater importance attached to feature-rich re-

gions”. Here, accuracy of classification and richness of fea-

tures are application domain-specific concepts and depend

on the resolution at which the image is processed. In an

earlier work, we developed heuristics that exploit the multi-

resolution processing capability and the inherent spatial lo-

cality of the image data features in order to provide im-

proved responses to such queries (Kumar et al, 2008b).

The aforementioned applications differ in their workflow

structure and also the complexity of their data analysis oper-

ations. The NC workflow processes a portion or chunk of

a single image at a time using a sequence of operations.

The end-result for an image is an aggregate of results ob-

tained from each independently processed chunk. PIQ, on

the other hand, contains complex analysis operations such as

aggregations, global computations and joins across multiple

datasets, that are not easily scalable. Hence, such applica-

tions require parallel algorithms for efficient processing of

out-of-core data.
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Fig. 1 Pixel Intensity Quantification (PIQ) workflow

Fig. 2 Neuroblastoma Classification (NC) workflow

4 Performance Optimizations

In this section we discuss several strategies for improving

workflow performance. Drawing from the application sce-

narios, we also present parameters that impact the perfor-

mance of applications in the spatial, multidimensional data

analysis domain. We classify these parameters into two main

categories, accuracy-preserving parameters and accuracy-tr-

ading parameters, and explain how they can influence per-

formance and/or quality of output.

4.1 Accuracy-preserving Parameters

Chunking Strategy: Individual data elements (e.g. images)

in a scientific dataset may be larger than the physical mem-

ory available on current workstations. Relying on virtual

memory alone is likely to yield poor performance. In gen-

eral, the processing of large, out-of-core spatial, multidi-

mensional data is supported by partitioning it into a set of

data chunks, each of which can fit in memory, and by modi-

fying the analysis routines to operate on chunks of data at a

time. Here, a data chunk provides a higher-level abstraction

for data distribution and is the unit of disk I/O. In the sim-

plest case, we can have a uniform chunking strategy, i.e. all

chunks have the same shape and size. For 2-D data, this pa-

rameter is represented by a pair [W ,H ], where W and H

respectively represent the width and height of a chunk. In

our work, we use this simplified strategy and refer to this

parameter as chunksize. The chunksize parameter can

influence application execution in several ways. The larger

a chunk is, the greater the amount of disk I/O and inter-

processor communication for that chunk will likely be, al-

beit the number of chunks will be smaller. The chunksize

affects the number of disk blocks accessed and network pack-

ets transmitted during analysis. However, larger chunks im-

ply a decreased number of such chunks to be processed, and

this could in turn, decrease the job scheduling overheads.
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Moreover, depending on the levels of memory hierarchy and

hardware architecture present on a compute resource, the

chunksize can affect the number of cache hits/misses for

each component and thus, the overall execution time. For

the PIQ workflow, we observed that varying chunksize re-

sulted in differences in execution time. Moreover, the opti-

mal chunksize for one component may not be optimal for

other components; some components prefer larger chunks,

some prefer square-shaped chunks over thin-striped chunks,

while others may function independent of the chunksize.

Component configuration: Components in a workflow co-

uld have many algorithmic variants. Traditionally, one of

these variants is chosen based on the type of the input data

to the component and/or the type of the output data expected

from the component. However, choosing an algorithmic vari-

ant can affect the application performance based on resource

conditions/availability and data characteristics, even when

each variant performs the analysis differently but produces

the same output and preserves the output quality. In an ear-

lier work (Kumar et al, 2008a), we developed three parallel-

algorithmic variants for the warp component of the PIQ wor-

kflow. We observed that depending on the available resources

– clusters nodes with faster processors or clusters equipped

with high-speed interconnects or nodes offering higher disk

I/O rates – each variant was capable of outperforming the

other, and no single variant performed best under all re-

source conditions.

Task Granularity and Execution Strategy: A workflow

may consist of many components. If a chunk-based pro-

cessing of datasets is employed, creating multiple copies

of a component instance may speed up the process through

data parallelism. How components and component copies

are scheduled, grouped, and mapped to machines in the en-

vironment will affect the performance, in particular if the

environment consists of a heterogeneous collection of com-

putational resources. An approach could be to treat each

(component instance, chunk) pair as a task and each ma-

chine in the environment as a Grid site. This provides a uni-

form mechanism for execution within a Grid site as well

as across Grid sites. It also enables maximum flexibility in

using job scheduling systems such as Condor (Thain et al,

2005). However, if the number of component instances and

chunks is large, then the scheduling and data staging over-

heads may assume significance. An alternative strategy is

to group multiple components into meta-components and

map/schedule these meta-components to groups of machines.

Once a meta-component is mapped to a group of machines, a

combined task- and data-parallelism approach with pipelined

dataflow style execution can be adopted within the meta-

component. When chunking is employed, the processing of

chunks by successive components (such as thresholding and

tessellation in the PIQ workflow) can be pipelined such that,

when a component C 1 is processing a chunk i, then the

downstream component C 2 can concurrently operate on ch-

unk i + 1 of the same data element. A natural extension to

pipelining is the ability to stream data between successive

workflow components mapped to a single Grid site, so that

the intermediate disk I/O overheads are avoided.

4.2 Accuracy-trading Parameters

Chunking strategy: The chunksize parameter may also

function as an accuracy-trading performance parameter in

cases where analysis operations depend on the feature con-

tent within a data chunk. In the NC workflow, chunksize

affects both the performance and accuracy of the analysis.

The smaller the chunksize is, the faster the analysis of each

chunk. However, small chunksize values (where chunks

are smaller than the features being analyzed) could lead to

false-negatives. If the chunk is too large, then extraneous

features and noise within a chunk could impact the accuracy

of analysis.

Data resolution: Spatial data has an inherent notion of data

quality. The resolution parameter for spatial, multidimen-

sional data takes values from 1 to n, where n represents the

data at its highest quality. If a multi-resolution analysis ap-

proach is adopted, then the processing of data chunks at dif-

ferent resolutions will produce output of varying quality.

Execution time increases with resolution because higher

resolutions contain more data to be processed. In some cases,

data may need to be processed only at the lowest target res-

olution that can yield a result of adequate quality. It is as-

sumed that the accuracy of analysis is maximum when data

is processed at its highest resolution.

Processing order: The processing order parameter ref-

ers to the order in which data chunks are operated upon by

the components in a workflow. In the NC workflow, the ac-

curacy of analysis computed across an entire image is ob-

tained as an aggregate of the accuracy of analysis for each

chunk in the image. As aggregation is not always commuta-

tive, the order in which chunks are processed will affect the

accuracy of analysis when computed across the entire im-

age. Our previous work (Kumar et al, 2008b) with the NC

workflow showed how out-of-order processing of chunks

(i.e., selecting a subset of “favorable” chunks ahead of other

chunks) in an image could be used to improve response (by

upto a factor of 40%) to user queries that contain various

quality-of-service requirements.
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5 Workflow Composition and Execution Framework

In this section, we describe our framework to support speci-

fication and execution of data analysis workflows. The frame-

work consists of three main modules. The description mod-

ule implements support for high-level specification of work-

flows. In this module, the application structure and data char-

acteristics for the application domain are presented to the

system. This representation is independent of actual data in-

stances used in the application and the compute resources on

which the execution is eventually carried out. The execution

module is responsible for workflow execution and takes as

input, the high-level description of the workflow produced

by the description module, the datasets to be analyzed and

the target distributed execution environment. Lastly, the tra-

de-off module, implements runtime mechanisms to enable

accuracy-performance trade-offs based on user-specified qu-

ality-of-service requirements and constraints. The architec-

ture of the framework is illustrated in Figure 3. In this paper,

we evaluated a specific instance of this framework where

the representative systems for each module are highlighted

using blue boxes in the figure.

5.1 Description Module (DM)

The Description Module (DM) is implemented using the

Wings (Workflow Instance Generation and Selection) sys-

tem (Gil et al, 2007). In the Wings representation of a scien-

tific workflow, the building blocks of a workflow are com-

ponents and data types. Application domain-specific com-

ponents are described in component libraries. A component

library specifies the input and output data types of each com-

ponent and how metadata properties associated with the in-

put data types relate to those associated with the output for

each component. The data types themselves are defined in

a domain-specific data ontology. Wings allows users to de-

scribe an application workflow using semantic metadata pro-

perties associated with workflow components and data types

at a high level of abstraction. This abstraction is known as a

workflow template. The workflow template and the seman-

tic properties of components and data types are expressed

using the Web Ontology Language(OWL)3. A template ef-

fectively specifies the application-specific workflow compo-

nents, how these components are connected to each other to

form the workflow graph, and the type of data exchanged

between the components. Figure 4(a) is a depiction of a

workflow template constructed for the PIQ application. The

workflow template is data-instance independent; it specifies

data types consumed and produced by the components but

not particular datasets. Wings can use the semantic descrip-

tions to automatically validate a given workflow, i.e., if two

3 http://www.w3.org/TR/owl-ref

components are connected in the workflow template, Wings

can check whether output data types and properties of the

first component are consistent with the input data types and

properties of the second component. Given a workflow tem-

plate, the user can specify a data instance (e.g., an image) as

input to the workflow and the input argument values to each

component in the workflow. Using the metadata properties

of the input datasets, Wings can automatically generate a

detailed specification of the workflow tasks and data flow in

the form of a DAG referred to as an expanded workflow in-

stance for execution. Figure 4(b) shows a workflow instance

generated by Wings from the PIQ workflow template.

Domain-specific Data Ontology: Wings provides “core”

ontologies that can describe abstract components and data

types. For any new application domain, these core ontolo-

gies can be extended to capture domain-specific informa-

tion. Semantic descriptions for new data types and compo-

nents are maintained in domain-specific ontologies. Work-

flow templates for applications within that domain can then

be constructed using these ontologies. The core data ontol-

ogy in Wings contains OWL-based descriptions of generic

data concepts such as File, Collection of Files of the

same type, and CollOfCollections, as well as their meta-

data properties. However, our motivating applications pro-

cess spatial, multidimensional data by partitioning datasets

into higher-level entities called chunks. The core data on-

tology is not expressive enough to capture the semantics

of datasets used in our motivating applications. So, we ex-

tended this core ontology (as shown in Figure 5) to express

concepts and properties in the spatial, multidimensional data

model so that application data flow can be conveniently de-

scribed in terms of these concepts. While this ontology is

not exhaustive, it is generic enough to represent typical ap-

plication instances such as the PIQ and NC workflows. It

can also be extended to support a wider range of data analy-

sis applications within the domain.

Wings also provides compact representations in the tem-

plate for component collections, i.e., cases where multiple

copies of a component can be instantiated to perform the

same analysis on different data input instances. The number

of such copies for a component can be selected during the

workflow instance generation stage based on the properties

of the input datasets. Performance can be improved by ad-

justing both the task- and data-parallelism parameter as well

as application performance parameters such as chunksize.

For the PIQ and NC workflows, the chunksize parame-

ter dictates the unrolling of component collections in the

workflow template into a bag of component tasks in the

workflow instance. As an example, assume that the value

of the chunksize parameter chosen for a given input image

was 2560×2400 pixels and resulted in each image slice be-

ing partitioned into 36 chunks. The corresponding expanded
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Fig. 3 Framework architecture

workflow instance for the PIQ workflow as shown in Fig-

ure 4(b) contains 116 tasks. Component collections are shown

in the workflow instance as long horizontal rows of tasks,

signifying that each collection has been unrolled into 36

tasks, where each task represents an operation performed on

a single chunk. Thus, chunksize parameter influences the

structure of the resulting workflow instance.

In our current system, we also support the notion of meta-

components or explicit component grouping. A meta-compo-

nent can be viewed as a combination or clustering of com-

ponents across multiple levels in a workflow template. Co-

alescing components into meta-components corresponds to

the adjustment of the task granularity parameter for per-

formance optimization. During execution, all tasks within a

meta-component are scheduled at once and mapped to the

same set of resources. Note that the use of meta-components

complements the existing job clustering capabilities provided

by Grid workflow systems such as Pegasus (Deelman et al,

2004). Horizontal and vertical job clustering capabilities in

Pegasus are used to group tasks that are explicitly specified

in a workflow instance. However, it is highly desirable to

also support the following features:

– Task parallelism: Vertical clustering implies that work-

flow tasks at multiple levels are grouped into clusters

so that each group can be scheduled for execution on

the same processor. To improve performance, task par-

allelism across tasks within such groups, and also data

streaming from one task to another is needed to avoid

disk I/O overheads.
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(a) Workflow Template created for PIQ (b) Workflow Instance generated by Wings for chunksize

parameter = 2560×2400 pixels

Fig. 4 PIQ application workflow represented using Wings
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Fig. 5 Wings data ontology extensions for spatial, multidimensional data

– Fine-grain control: Workflows such as PIQ also contain

parallel components (e.g., MPI-style jobs) that execute

across a number of nodes, but whose processes are not

expressed as explicit tasks in the workflow instance. It is

the responsibility of the parallel runtime system at a site

to manage the processes of such components across the

nodes at that site.

Meta-components can provide such task-parallelism and fine-

grain control. By grouping successive components into a

meta-component in the workflow template, each such com-

ponent’s processes can be concurrently scheduled for ex-

ecution on the same compute resource. For example, the

grey rectangles shown in the workflow instance in Figure 6

indicate that all processes corresponding to all four com-

ponents (shown as blue ovals) in the workflow have been

fused into a meta-component. One task corresponding to

each meta-component will be scheduled for execution con-

currently. Within each meta-component task, the execution

is pipelined, and data is streamed from one component to

another during execution.

5.2 Execution Module (EM)

The Execution Module (EM) consists of the following sub-

systems that work in an integrated fashion to execute work-

flows in a distributed environment and on cluster systems:

Pegasus Workflow Management System is used to reliably

Fig. 6 Meta-components in the NC workflow instance

map and execute application workflows onto diverse com-

puting resources in the Grid (Deelman et al, 2004). Pega-

sus takes resource-independent workflow descriptions gen-

erated by the DM and produces concrete workflow instances

with additional directives for efficient data transfers between

Grid sites. Portions of workflow instances are mapped onto

different sites, where each site could potentially be a hetero-

geneous, cluster-style computing resource. Pegasus is used

to manipulate the component config parameter, i.e. the
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component transformation catalog can be modified to se-

lect an appropriate mapping from components to analysis

codes for a given workflow instance. Pegasus also supports

runtime job clustering to reduce scheduling overheads. Hor-

izontal clustering groups together tasks at the same level of

the workflow (e.g. the unrolled tasks from a component col-

lection), while vertical clustering can group serial tasks from

successive components. All tasks within a group are sched-

uled for execution on the same set of resources. However,

Pegasus does not currently support pipelined dataflow exe-

cution and data streaming between components. This sup-

port is provided by DataCutter (Beynon et al, 2001) as ex-

plained later in this section.

Condor (Thain et al, 2005) is used to schedule tasks across

machines. Pegasus submits tasks corresponding to a portion

of a workflow in the form of a DAG to DAGMan meta-

scheduler instances running locally at each Grid site. DAG-

Man resolves the dependencies between jobs and accord-

ingly submits them to Condor, the underlying batch sched-

uler system.

DataCutter (Beynon et al, 2001) is employed for pipelined

dataflow execution of portions of a workflow mapped to a

Grid site consisting of cluster-style systems. A task mapped

and scheduled for execution by Condor on a set of resources

may correspond to a meta-component. In that case, the ex-

ecution of the meta-component is carried out by DataCut-

ter in order to enable the combined use of task- and data-

parallelism and data streaming among components of the

meta-component. DataCutter uses the filter-stream program-

ming model, where component execution is broken down

into a set of filters that communicate and exchange data

via a stream abstraction. For each component, the analysis

logic (expressed using high-level languages) like C++, Java,

Matlab and Python) is embedded into one or more filters in

DataCutter. Each filter executes within a separate thread, al-

lowing for CPU, I/O and communication overlap. Multiple

copies of a filter can be created for data parallelism within

a component. DataCutter performs all steps necessary to in-

stantiate filters on the target nodes and invokes each filter’s

analysis logic. A stream denotes a unidirectional data flow

from one filter (i.e., the producer) to another (i.e., the con-

sumer). Data exchange among filters on the same node is

accomplished via pointer hand-off while message passing

is used for filters on different nodes. In our framework, we

employ a version of DataCutter that uses MPI for commu-

nication to exploit high-speed interconnect technology on

clusters that support them.

ECO compiler: Within the execution of a single component

task, the Empirical Compilation and Optimization (ECO)

compiler can be employed to achieve targeted architecture-

specific performance optimizations. ECO uses model-guided

empirical optimization (Chen et al, 2005) to automatically

tune the fine-grain computational logic (where applicable)

for multiple levels of the memory hierarchy and multi-core

processors on a target compute resource. The models and

heuristics employed in ECO limit the search space, and the

empirical results provide the most accurate information to

the compiler to tune performance parameter values.

5.3 Trade-off Module (TM)

When large datasets are analyzed using complex operations,

an analysis workflow may take too long to execute. In such

cases, users may be willing to accept lower quality output

for reduced execution time, especially when there are con-

straints on resource availability. The user may, however, de-

sire that a certain application-level quality of service (QoS)

be met. Examples of QoS requirements in image analysis

include Maximize the average confidence in classification

of image tiles within t time units and Maximize the number

of image tiles, for which the confidence in classification ex-

ceeds the user-defined threshold, within t units of time (Ku-

mar et al, 2008b). We have investigated techniques which

dynamically order the processing of data elements to speed

up application execution while meeting user-defined QoS re-

quirements on the accuracy of analysis. The Trade-off Mod-

ule (TM) draws from and implements the runtime support

for these techniques so that accuracy of analysis can be traded

for improved performance.

We provide generic support for reordering the data pro-

cessing operations in our framework by extending Condor’s

job scheduling component. When a batch of tasks (such as

those produced by expansion of component collections in

a Wings workflow instance) is submitted to Condor, it uses

a default FIFO ordering of task execution. Condor allows

users to set the relative priorities of jobs in the submission

queue. However, only a limited range (-20 to +20) of priori-

ties are supported by the condor prio utility, while a typical

batch could contain tasks corresponding to thousands of data

chunks. Moreover, condor prio does not prevent some tasks

from being submitted to the queue in the first place. In our

framework, we override Condor’s default job scheduler by

invoking a customized scheduling algorithm that executes

as a regular job within Condor’s “scheduler universe” and

does not require any super-user privileges. The scheduling

algorithm implements a priority queue-based job reordering

scheme (Kumar et al, 2008b) in a manner that is not tied to

any particular application. It uses the semantic representa-

tions of data chunks in order to map jobs to the spatial coor-

dinates of the chunks. When the custom scheduler decides

which chunk to process next based on its spatial coordinates

and other spatial metadata properties, it uses this associa-

tion to determine the job corresponding to this chunk and
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moves it to the top of the queue. The custom scheduler can

be employed for any application within the spatial data anal-

ysis domain. The priority queue insertion scheme can be ma-

nipulated for different QoS requirements such that jobs cor-

responding to the favorable data chunks are scheduled for

execution ahead of other jobs. In this way, the customized

scheduler helps exercise control over the processing order

parameter. When there are no QoS requirements associated

with the user query, our framework reverts to the default job

scheduler within Condor.

5.4 Framework Application

Our current implementation of the proposed framework sup-

ports the performance optimization requirements associated

chunk-based image/spatial data analysis applications. How-

ever, the framework can be employed in other data analy-

sis domains. The customized Condor scheduling module fa-

cilitates a mechanism for trading analysis accuracy for per-

formance with user-defined quality of service requirements.

The current implementation instance of our framework pro-

vides support for users to specify and express the values of

various performance parameters to improve performance of

the workflow. When dealing with application-specific per-

formance parameters at a fine-grain computation levels, the

model-guided optimization techniques in ECO can assist the

user in determining the optimal parameter values. We view

this as a first step towards an implementation that can au-

tomatically map user queries to appropriate parameter value

settings. We target application scenarios where a given work-

flow is employed to process a large number of data elements

(or a large dataset that can be partitioned into a set of data el-

ements). In such cases, a subset of those data elements could

be used to search for suitable parameter values (by applying

sampling techniques to the parameter space) during work-

flow execution and subsequently refining the choice of pa-

rameter values based on feedback obtained from previous

runs. Statistical modelling techniques similar to those used

in the Network Weather Service (Wolski et al, 1999) can be

used to predict performance and quality of future runs based

on information gathered in previous runs.

6 Experimental Evaluation

In this section, we present an experimental evaluation of our

proposed framework using the two real-world applications,

PIQ and NB, described in section 3. Our evaluation was car-

ried out across two heterogeneous Linux clusters hosted at

different locations at the Ohio State University. The first one

(referred to here as RII-MEMORY) consists of 64 dual-

processor nodes equipped with 2.4 GHz AMD Opteron pro-

cessors and 8 GB of memory, interconnected by a Gigabit

Ethernet network. The storage system consists of 2x250GB

SATA disks installed locally on each compute node, joined

into a 437GB RAID0 volume. The second cluster, (referred

to here as RII-COMPUTE), is a 32-node cluster consisting

of faster dual-processor 3.6 GHz Intel Xeon nodes each with

2 GB of memory and only 10 GB of local disk space. This

cluster is equipped with both an InfiniBand interconnect as

well as a Gigabit Ethernet network. The RII-MEMORY and

RII-COMPUTE clusters are connected by a 10-Gigabit wide-

area network connection – each node is connected to the net-

work via a Gigabit card; we observed about 8 Gigabits/sec

application level aggregate bandwidth between the two clus-

ters. The head-node of the RII-MEMORY cluster also served

as the master node of a Condor pool that spanned all nodes

across both clusters. A Condor scheduler instance running

on the head-node functioned both as an opportunistic sched-

uler (for “vanilla universe” jobs) and a dedicated scheduler

(for parallel jobs). The “scheduler universe” jobs in Con-

dor, including our customized scheduling algorithm, when

applicable, run on the master node. All other nodes of the

Condor pool were configured as worker nodes that wait for

jobs from the master. DataCutter instances executing on the

RII-COMPUTE cluster use the MVAPICH flavor4 of MPI

for communication to exploit the InfiniBand interconnect.

Our evaluation of the ECO compiler’s automated parame-

ter tuning was carried out independently on a Linux cluster

hosted at the University of Southern California. In this clus-

ter (referred to as HPCC) we used a set of 3.2 GHz dual

Intel Xeon nodes each with 2 GB of memory for our evalu-

ation.

In the following experiments, we evaluate the perfor-

mance impact of a set of parameter choices on workflow

execution time. First, a set of accuracy-preserving parame-

ters are explored, as we would initially like to tune the per-

formance without modifying the results of the computation.

We subsequently investigate the accuracy-trading parame-

ters.

6.1 Accuracy-preserving Parameters

We used our framework to evaluate the effects of three dif-

ferent accuracy-preserving parameters on the execution time

for the PIQ workflow – (i) the chunksize, a component-

level parameter, (ii) the task granularity, a workflow-level

parameter, and (iii) numActiveChunks, a component-level

parameter that is specific to the warp component. Two addi-

tional accuracy-preserving parameters – component config

and component placement were set to their optimal val-

ues based on our prior experience with and evaluations of

the PIQ workflow. In an earlier work (Kumar et al, 2008a),

4 http://mvapich.cse.ohio-state.edu
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our evaluations revealed that certain components of the PIQ

workflow such as normalize and autoalign were much faster

when mapped for execution onto cluster machines equipped

with fast processors and high-speed interconnects. Based on

these evaluations and our knowledge of the data exchange

between components in the workflow, we determined an op-

timal component placement strategy which minimized ov-

erall computation time as well as the volume of data ex-

change between nodes. In this strategy, components zpro-

ject, prenormalize, stitch, reorganize,warp and the prepro-

cess meta-component execute on the RII-MEMORY cluster

nodes, while the normalize, autoalign and mst components

are mapped to the faster processors of the RII-COMPUTE

cluster. This component placement strategy allows for ma-

ximum overlap between computation and data communica-

tion between sites for the PIQ workflow. In another earlier

work (Kumar et al, 2006), we designed multiple algorith-

mic variants for the warp and preprocess components of the

PIQ workflow. Our evaluations helped us select the most

performance-effective variant for these components depend-

ing upon the resources they are mapped to. In our exper-

iments, we fixed the values of these latter two parameters

and then set out to tune or determine optimal values for the

remaining parameters. Our strategy was to treat different pa-

rameters independently, selecting a default value for one pa-

rameter while exploring the other. The decision as to which

parameter to explore first is one that can either be made by

an application developer, or can be evaluated systematically

by a set of measurements, such as the sensitivity analysis

found in (Chung and Hollingsworth, 2004).

Effects of chunksize: For these experiments, we used a

5 GB image with 8 focal planes, with each plane at a res-

olution 15,360×14,400 pixels. The chunksize parameter

determines the unrolling factor for component collections in

the template shown in Figure 4(a). Varying the chunksize

parameter value affects the structure of the resulting work-

flow instance and the number of workflow tasks to be sched-

uled, as shown in table 1.

Table 1 Number of tasks in PIQ workflow instance for a given

chunksize parameter value

chunksize # of chunks # of tasks in workflow

(pixels) in a plane (no (horizontal

clustering) clustering::32)

512×480 900 2708 95

1024×960 225 683 32

1536×1440 100 308 20

2560×2400 36 116 14

3072×2880 25 83 9

5120×4800 9 35 9

The disparity among the number of tasks in the result-

ing workflow instances will increase as the images grow in

size, because larger images can accomodate more combina-

tions of the chunk dimensions. If workflow templates have

a larger number of component collections, then the number

of tasks in the resulting workflow instance will vary more

greatly with chunksize value. As job submission and job

scheduling overheads are sizeable contributions to the over-

all execution time, one possible optimization technique is to

employ horizontal clustering of tasks from every component

collection. The table also shows the number of tasks in the

resulting PIQ workflow instance for each chunksize value

when horiontal clustering by Pegasus is used to group tasks

from component collections into bundles of 32 tasks each.

Ideally, with horizontal clustering, one should expect dimin-

ishing job scheduling overheads and lesser disparity in the

execution times observed at different chunksize values.

Figure 7(a) shows the overall execution time for the PIQ

workflow instance when choosing different chunksize pa-

rameter values, both with and without using horizontal job

clustering (We used 16 RII-MEMORY nodes and 8 RII-

COMPUTE nodes for these experiments). This time is in-

clusive of the time to stage data in and out of each site dur-

ing execution, the actual execution times for each compo-

nent, and the job submission and scheduling overheads. We

observe that: (1) At both extremes of the chunksize param-

eter value range, the execution times are high. The job sub-

mission and scheduling overheads for the large number of

tasks dominate at smallest chunksize value. At the largest

chunksize value, the number of resulting chunks in an im-

age becomes lesser than the number of worker nodes avail-

able for execution. Since each task must process at least one

chunk, the under-utilization of resources leads to higher ex-

ecution times. (2) The intermediate values for chunksize

yield more or less similar performance, except for an unex-

pected spike at chunksize = 2560× 2400. On further in-

vestigation of the individual component execution times, we

observed that the algorithmic variant used for the warp com-

ponent – which accounts for nearly 50% of the overall ex-

ecution time of PIQ – performed poorly at this chunksize

value. Figures 7(b) and 7(c) show how chunksize value af-

fects performance at the level of each component. (3) Hori-

zontal job clustering, as expected, lowers execution time at

smaller chunksize values. At larger chunksize values, the

lack of a large job pool to begin with renders job clustering

ineffective.

As mentioned earlier, chunksize value is expected to

have a greater impact on the performance for larger images

because of the larger range within which the parameter val-

ues can be varied. Figure 7(d) presents our evaluation results

obtained for a 17 GB image (with 3 focal planes, each plane

having 36864× 48000 pixels). We used 32 RII-MEMORY

nodes and 8 RII-COMPUTE nodes for these experiments.
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The chunksize parameter has been shown using separate

axes for the chunk width and the chunk height for better

viewing of the results. The surface was plotted based on re-

sults obtained using 75 different values of the chunksize

parameter. Again, we observe poor performance at the ex-

treme low and high values of chunksize for the same rea-

sons outlined earlier. Here, we also observed that chunksize

values that correspond to long horizontal stripe chunks yiel-

ded better performance for the PIQ workflow and this class

of data. This tells us that most analysis operations in the PIQ

workflow favor horizontal striped chunks. In future endeav-

ors, our framework will seek to determine the best values

of the chunksize parameter by efficient navigation of the

surface based on sampling techniques and trends generated

from training data.

Effects of Task Granularity: In these experiments, we coa-

lesced components of the PIQ workflow into meta-compone-

nts to produce a workflow template with a coarser task gran-

ularity. Figure 8 illustrates an alternative workflow template

for the PIQ application generated using Wings, that groups

components into meta-components. Here, the zproject and

Fig. 8 Wings workflow template for the PIQ application with meta-

components

prenormalize steps from the original template are fused to

form metacomp1; normalize, autoalign, mst are collectively

metacomp2 while stitch, reorganize, warp form metacomp3.

Preprocess is the fourth meta-component in the workflow

template and includes the thresholding, tessellation and pre-

fix sum generation components. By using this representa-

tion, our framework further reduces the number of tasks in

a workflow instance. When component collections are em-

bedded within a meta-component, they are not explicitly

unrolled at the time of workflow instance generation. In-

stead, they are implicitly unrolled at runtime within a corre-

sponding DataCutter instance. That is, the chunksize input

parameter to a meta-component is propagated to the Data-

Cutter filters set up for each component within that meta-

component. Based on the value of chunksize, DataCutter

will create multiple transparent copies of filters that handle

the processing of tasks within a component collection. Each

such filter copy or instance will operate on a single chunk

at a time. We also manipulated the execution strategy within

the preprocess meta-component to support task-parallelism

(i.e., pipelined execution of data chunks) in order to avoid

disk I/O overheads for the meta-component.
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Fig. 9 Execution time with different task granularity (5GB image, 40

nodes, chunksize=512×480)

Figure 9 shows that the overall execution time for the

PIQ workflow improves by over 50% when the task gran-

ularity strategy employed includes meta-components. The

figure also shows the changes in execution times for individ-

ual components of the workflow. For parallel components

like autoalign and warp, there is no difference in perfor-

mance because the actual scheduling of processes within

a component is carried out in the same way regardless of

whether meta-components are used or not. However, com-

ponent collections like zproject, normalize and reorganize

benefit from the high-granularity execution. This difference

is attributed to the two contrasting styles of execution that

our framework can offer by integrating Pegasus and Data-

Cutter. Pegasus supports batch-style execution where the ex-

ecution of each task is treated independently. If startup costs
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(e.g. MATLAB invocation or JVM startup) are involved in

the execution of a task within a component collection, such

overheads are incurred for each and every task in the collec-

tion. In contrast, DataCutter functions like a services-based

system, where filters set up on each worker node perform

the desired startup operations only once and process multi-

ple data instances. The input data to a collection can thus be

streamed through these filters. Depending on the nature of

the tasks within a collection, our framework can use explicit

unrolling and execution via Pegasus, or implicit unrolling

within a meta-component and execution via DataCutter.

Effects of parameter tuning for individual components:

In these experiments, we take a closer look at accuracy-

preserving parameters that are specific to individual compo-

nents in the workflow. Our goal here is to show how the auto-

tuning of such parameters based on model-guided optimiza-

tion techniques within the ECO compiler can reduce the ex-

ecution times of the individual components, and hence, of

the overall workflow. In the PIQ workflow, one of the algo-

rithmic variants of the warp component, known as the On-

Demand Mapper (ODM), was shown to provide best perfor-

mance among all variants, as long as the amount of phys-

ical memory available on the cluster nodes was not a lim-

iting factor in the execution (Kumar et al, 2006). The ben-

efits of ODM derived from the fact that ODM, unlike the

other variants, seeks to maintain large amounts of data in

memory during execution. We identified a parameter called

numActiveChunks that affects the execution time of the

ODM variant by limiting the number of ‘active’ data chunks

that ODM can maintain in memory on a node at any given

time. The larger the number of active chunks that can be

maintained in memory, the greater the potential for data reuse

when the warping transformations are computed for the in-

put data. The potential reduction in chunk reads and writes

via data reuse leads to lesser execution time. The maximum

value of numActiveChunks parameter depends on the size

of the chunks and the availabe physical memory on a node.

However, the optimal numActiveChunks value may depend

on other factors such as the potential for data reuse in the

ODM variant for a given memory hierarchy which need to

be modeled appropriately.

We introduced a novel technique for modeling that dis-

covers the behavior of such application-level parameters thr-

ough the use of functional models and statistical methods

in (Nelson, 2009). Our technique requires the component

developer to identify a set of integer-valued parameters, and

also specify the expected range for the optimal parameter

value. The models are derived from sampling the execution

time for a small number of parameter values, and evaluating

how well these sample points match a functional model. To

derive the functional model of the sample data, we use the

curve fitting toolbox in MATLAB to find the function that

best fits the data, and also to compute the R2 value in order

to quantify the accuracy of our model. Ultimately, we dis-

covered that the double-exponential function (y = a*eb∗x +

c*ed∗x) was the best overall match for the application-level

parameters in our set of experiments. Using this double-

exponential function model, the algorithm can select the pa-

rameter value for which the function is minimized, and can

dynamically identify the neighborhood of the best result.

Our experiments were conducted on nodes of the HPCC

cluster. Here, we evaluated only the warp component of the

PIQ workflow. Specifically, we evaluated only the ODM vari-

ant of the component in order to determine the optimal value

of the numActiveChunks parameter. Figure 10 shows re-

sults of our evaluation from warping a single slice of the im-

age data described earlier in this section. We try to model

the behavior of the numActiveChunks parameter for the

input data using a statistical analysis approach. In this fig-

ure, the curve represents the double-exponential function

obtained using five sample data points, while the remaining

points obtained from the exhaustive search within the range

of permissible parameter values are also shown. The area

between the dotted lines represents the range of parameter

values that our model predicts will have performance within

2% of the best performance. In this case, we predicted the

optimal value of 74 for the numActiveChunks through the

function model, which ended up being within 1.25% of the

real best performance that one could obtain using the ex-

haustive search.
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Fig. 10 Autotuning to obtain optimal value of numActiveChunks pa-

rameter for the warp component; 8 processors

We validate our model by comparing against performance

results from an exhaustive set of experiments across the en-

tire permissible parameter range. Overall, we have achieved

speedups up to 1.38X as compared to the worst-case perfor-

mance from an exhaustive search while being within 0.57%

and 1.72% of the best performance from the exhaustive search.

We examined only 5% of the parameter search space by

computing five point samples. Our experimental results show



16

speedups of up to 1.30X as compared to the user-specified

default parameter value. While our speedup is small when

placed in the context of the overall PIQ workflow, our selec-

tion of parameter values based on a statistical analysis ap-

proach derives improved performance as compared to cur-

rent user-specified values.

6.2 Accuracy-trading Parameters

These experiments demonstrate performance gains obtained

when one or more accuracy-trading parameters were modi-

fied in response to queries with QoS requirements. The op-

timizations in these experiments are derived from the cus-

tom scheduling approach described in section 5.3 that makes

data chunk reordering decisions dynamically as and when

jobs are completed. In all our experiments, we observed that

the overall execution time using our custom scheduling al-

gorithm within Condor is only marginally higher than that

obtained from using the default scheduler, thereby show-

ing that our approach introduces only negligible overheads.

These experiments were carried out on the RII-MEMORY

cluster 5 with Condor’s master node running our customized

scheduler. We carried out evaluations using multiple images

(ranging in size from 12 GB to 21 GB) that are character-

ized by differences in their data (feature) content. We target

user queries with two kinds of QoS requirements: Require-

ment 1: Maximize average confidence across all chunks in

an image within time t; Requirement 2: Given a confidence

in classification threshold, maximize the number of final-

ized chunks for an image within time t. These requirements

can be met by tuning combinations of one or more relevant

accuracy-trading parameters.

Tuning only the processing order parameter for re-

quirement 1: This is useful when users wish to maximize

average confidence across an image while processing all chu-

nks at the highest resolution, i.e. trading quality of result for

the overall image, but not the quality of the result for individ-

ual chunks. In such cases, the processing order parame-

ter can be tuned such that the Condor customized scheduler

prioritizes chunks that are likely to yield output with higher

(con f idence/time) value at the maximum resolution.

Figure 11 shows that a tuned parameter helps achieve

a higher average confidence at maximum resolution across

all chunks. For example, after 800 seconds, the tuned pa-

rameter execution achieves an average confidence of 0.34

which is greater than the 0.28 value achieved when no pa-

rameter tuning is employed. This is because our customized

5 Our goal here is only to demonstrate our framework’s ability to

exploit performance-quality trade-offs, and not adaptability to hetero-

geneous sets of resources. We note that this experiment could also be

carried out on the same testbed used for the PIQ application.
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scheduler tunes the processing order parameter to re-

order chunk execution in a manner that favors jobs corre-

sponding to chunks that yield higher confidence.

Tuning both the resolution and processing order pa-

rameters for requirement 1: This is useful when individ-

ual chunks can be processed at lower resolutions so long

as the resulting confidence exceeds a user-specified thresh-

old. Figure 12 shows how parameter tuning helps achieve

higher average confidence at all points during the execution.

Each chunk is iteratively processed until only that target res-

olution at which the confidence exceeds a threshold (set to

0.25 here). Our custom scheduler prioritizes chunks that are

likely to yield output with higher (
con f idence

time
) value at lower

resolutions.
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Fig. 12 Quality improvement by tuning the processing order and

resolution parameters

Results obtained for other test images exhibited similar

improvement trends and also showed that our customized

scheduling extensions to Condor scale well with data size.
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Tuning both the resolution and processing order pa-

rameters for requirement 2: Here, the customized sched-

uler prioritizes jobs corresponding to chunks that are likely

to get finalized at lower resolutions. Figure 13 shows how

parameter tuning in our framework yields an increased num-

ber of finalized chunks at every point in time during the ex-

ecution. The improvement for this particular case appears

very slight because the confidence in classification thresh-

old was set relatively high as compared to the average confi-

dence values generated by the classify component, and this

gave our custom scheduler lesser optimization opportunities

via reordering.
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Fig. 13 Improvement in number of finalized tiles by tuning parameters

Scalability: In this set of experiments (carried out as part

of requirement 2), we scaled the number of worker nodes in

our Condor pool from 16 to 48. Our goal here was to de-

termine if our custom scheduler could function efficiently

when more worker nodes are added to the system. Figure 14

shows how the time taken to process a certain number of

chunks in an image halves as we double the number of work-

ers. Hence, the scheduler performance scales linearly when

an increasing number of resources need to be managed.

7 Summary and Conclusions

Many scientific workflow applications are data and/or comp-

ute-intensive. The performance of such applications can be

improved by adjusting component-level parameters as well

as by applying workflow-level optimizations. In some ap-

plication scenarios, performance gains can be obtained by

sacrificing accuracy of the analysis, so long as some min-

imum quality requirements are met. Our work has intro-

duced a framework that integrates a suite of workflow de-

scription, mapping and scheduling, and distributed data pro-

cessing subsystems in order to provide support for parameter-
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Fig. 14 Scalability with number of worker nodes

based performance optimizations along multiple dimensions

of the parameter space.

Our current implementation of the proposed framework

provides support for users to manually express the values of

the various performance parameters in order to improve per-

formance. We have customized the job scheduling module

of the Condor system to enable trade-offs between accuracy

and performance in our target applications. The experimen-

tal evaluation of the proposed framework shows that adjust-

ments of accuracy-preserving and accuracy-trading parame-

ters lead to performance gains in two real applications. The

framework also achieves improved responses to queries in-

volving quality of service requirements. As a future work,

we will incorporate techniques to search the parameter space

in a more automated manner. We target application scenarios

in which a large number of data elements or a large dataset

that can be partitioned into a number of chunks are pro-

cessed in a workflow. In such cases, a subset of the data

elements could be used to search for suitable parameter val-

ues during workflow execution and subsequently refining

the choice of parameter values based on feedback obtained

from previous runs.
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